Original Investigation

Examination and Comparison of Electrically Evoked Compound Action Potentials and Electrically Evoked Auditory Brainstem Response Results of Children with Cochlear Implantation without Inner Ear Anomaly

10.5152/tao.2019.4130

  • Seda Bayrak
  • Başak Mutlu
  • Günay Kırkım
  • Bülent Şerbetçioğlu

Received Date: 29.01.2019 Accepted Date: 09.04.2019 Turk Arch Otorhinolaryngol 2019;57(2):81-85

Objective:

To investigate the relationship between electrically evoked compound action potentials (ECAP) and electrically evoked auditory brainstem responses (EABR) in children with cochlear implants (CI) without inner ear anomalies.

Methods:

Sixteen children between the ages of two and six years who were CI users participated in the study. ECAP thresholds were recorded from one electrode in the basal, medial, and apical regions of the cochlear implant. EABRs were recorded from electrodes whose ECAP thresholds were determined. The latency-intensity functions, amplitude and morphological analyzes of the eIII and eV waves at 200 and 180 current unit (CU) excitation levels were performed. The data obtained were analyzed statistically.

Results:

ECAP thresholds were found to be 171.5±11.38, 169.69±20.32 and 160.81±20.03 CU at the basal, medial and apical electrodes, respectively. EABR thresholds were also found to be 169.69±12.17, 165.62±16.41 and 160±15.49 CU in basal, medial and apical electrodes, respectively. There was a strong positive correlation between ECAP and EABR thresholds in apical, medial and basal electrodes (p<0.05). EABR threshold levels were not significantly different between basal, medial and apical region electrodes (p>0.05), and ECAP threshold values were significantly different between apical and basal region electrodes (p=0.002). When the significance values of EABR eV wave latencies were analyzed in terms of electrode region, the difference between basal and apical regions was found to be significant (p=0.03).

Conclusion:

Consistency was found between ECAP and EABR recordings. However, it was concluded that one could not be preferred over the other because the data quality of the two tests was different. In future studies, ECAP and EABR recordings may be recommended by selecting more electrodes for stimulation.

Keywords: Cochlear implant, electrophysiological studies, electrically evoked compound action potential, electrically evoked auditory brainstem response